Given: A collar slides on a vertical rod and is fixed to a spring as shown. The rest position of the collar is the one that minimizes total energy

\[E(x) = \frac{1}{2} K (2 + x^2 - 2 \sqrt{1 + x^2}) + mgx \]

Note: \(g = 9.81 \text{ m/sec}^2 \)

Find: a) Rest position analytically. Set \(\frac{dE}{dx} = 0 \) and solve for \(x \). There is no exact solution, so use the solve feature on your calculator or iterate to find \(x \). Find \(x \) to 3 sig.fig.

b) Using sequential quadratic approximation. \(x_0 = 1, \Delta x_0 = 1 \) do two iterations. For second iteration, \(\Delta x = 0.5 \)

c) Use binary search where \(x_0 = 0, \Delta x = 0.6 \). Complete two full iterations - complete the iteration for which \(\Delta x = 0.15 \). Do not do the iteration for which \(\Delta x = 0.075 \).
② For the method of steepest descent, successive search directions are: (circle one)

 a) parallel
 b) acute
 c) perpendicular
 d) obtuse
 e) none of the above

③ \(f(x,y) = -\left[\frac{1}{4} (x^2+y^2) (y-x^2) \right] + y^2 + x^2 \)

 a) Write out the expression for the gradient, \(\nabla f(x,y) \)

 b) If \(x_0 = 2 \), \(y_0 = 4 \) find the initial search direction, \(s \)
 for the method of steepest descent

 c) Show that \((0, 0.775) \) is the minimum of \(f \).