1. Select a starting point, \(x_0 \) and a step, \(\Delta x \)

2. \(F_0 = F(x_0) \)

 \(F_1 = F(x_0 + \Delta x) = F(x_1) \)

 \(F_2 = F(x_2 + 2\Delta x) = F(x_2) \)

 \(\vdots \)

 \(F_n = F(x + n\Delta x) = F(x_n) \)

3. Stop when \(F_{n+1} > F_n \) and zoom in on \(F_{n-1} \), \(F_n \), \(F_{n+1} \)

4. Cut \(\Delta x \) in half: \(\Delta x = \Delta x / 2 \)

 and insert two new points between the existing ones

5. Select the lowest value of \(F \) along with one point on each side of it.
Often, it is left to the analyst to select appropriate values \(E_x \) and \(\Delta x \), sometimes given in the problem statement.

Exit criteria: Stop when the current estimate of the minimum changes "little" between iterations.

Changes \(\frac{f_{n+1} - f_n}{f_n} < E_x \) and \(f_{n+1} - f_n < E_f \).

Cut \(\Delta x \) in half again, and repeat the process.

The process is the current estimate of \(x^* \) is the corresponding \(x \).

New points.